Beginnings—Jargon and Undefined Terms
Episode 2 of Geometry

The Great Courses
Show More

Related videos

The Joy of Geometry
Episode 11 of The Joy of Mathematics
Geometry is based on a handful of definitions and axioms involving points, lines, and angles. These lead to important conclusions about the properties of polygons. This lecture uses geometric reasoning to derive the Pythagorean theorem and other interesting results.
Zero The Math Hero - Geometry Tutor
This is a 12 video playlist
Similarity and Congruence
Episode 9 of Geometry
Define what it means for polygons to be "similar" or "congruent" by thinking about photocopies. Then use that to prove the third key assumption of geometry--the side-angle-side postulate--which lets you verify when triangles are similar. Thales of Ionia used this principle in 600 B.C.E. to impress the Egyptians by calculating…
The Joy of Primes
Episode 3 of The Joy of Mathematics
A number is prime if it is evenly divisible by only itself and one: for example, 2, 3, 5, 7, 11. Professor Benjamin proves that there are an infinite number of primes and shows how they are the building blocks of our number system.
Variables and Algebraic Expressions
Part of the Series: Algebra I
Advance to the next level of problem solving by using variables as the building blocks to create algebraic expressions, which are combinations of mathematical symbols that might include numbers, variables, and operation symbols. Also learn some tricks for translating the language of problems (phrases in English) into the language of…
The Pythagorean Theorem
Part of the Series: Algebra I
Because it involves terms raised to the second power, the famous Pythagorean theorem, a2 + b2 = c2, is actually a quadratic equation. Discover how techniques you have previously learned for analyzing quadratic functions can be used for solving problems involving right triangles.
Impossible Sets
Delve into Bertrand Russell's profoundly simple paradox that undermined Cantor's theory of sets. Then follow the scramble to fix set theory and all of mathematics with a new set of axioms, designed to avoid all paradoxes and keep mathematics consistent - a goal that was partly met by the Zermelo-Fraenkel…
Bending the Axioms—New Geometries
Episode 36 of Geometry
Wrap up the course by looking at several fun and different ways of reimagining geometry. Explore the counterintuitive behaviors of shapes, angles, and lines in spherical geometry, hyperbolic geometry, finite geometry, and even taxi-cab geometry. See how the world of geometry is never a closed-book experience.
What Is the Sine of 1°?
Episode 18 of Geometry
So far, you've seen how to calculate the sine, cosine, and tangents of basic angles (0deg, 30deg, 45deg, 60deg, and 90deg). What about calculating them for other angles--without a calculator? You'll use the Pythagorean theorem to come up with formulas for sums and differences of the trig identities, which then…
Practical Applications of Similarity
Episode 10 of Geometry
Build on the side-angle-side postulate and derive other ways of testing whether triangles are similar or congruent. Also dive into several practical applications, including a trick botanists use for estimating the heights of trees and a way to measure the width of a river using only a baseball cap.
The Geometry of a Circle
Episode 19 of Geometry
Explore the world of circles! Learn the definition of a circle as well as what mathematicians mean when they say things like radius, chord, diameter, secant, tangent, and arc. See how these interact, and use that knowledge to prove the inscribed angle theorem and Thales' theorem.
Losing to Win, Strategizing to Survive
Continue your exploration of game theory by spotting the hidden strange loop in the unexpected exam paradox. Next, contemplate Parrando's paradox that two losing strategies can combine to make a winning strategy. Finally, try increasingly more challenging hat games, using the axiom of choice from set theory to perform a…