Drought, Heat Waves, and Dust Storms

Drought, Heat Waves, and Dust Storms
Show More

Related videos

How Radar Reveals Storms
In this and the next lecture, study the advanced technology that has revolutionized extreme weather forecasting. Here, look at how radar has vastly improved the prediction of tornadic thunderstorms. You've seen Doppler radar images in forecasts. Now learn how this all-important tracking tool works.
Ice Storms: Freezing Rain Takes Over
Begin the first of three lectures on winter weather by pinning down the cause of ice storms, which are beautiful but also dangerous and destructive. Professor Snodgrass demonstrates how supercooled water is the source of the freezing rain behind these perilous storms.
Tornadogenesis and Storm Chasing
The genesis of tornadoes takes place under complex conditions that are still being deciphered by meteorologists who make detailed measurements from up close. Go inside a supercell thunderstorm to see a tornado being spawned. Then learn tornado safety tips and the precautions that professional storm chasers take.
Storm Surge and Hurricane Intensification
Hurricanes destroy life and property in four ways: through storm surge, inland flooding, high winds, and embedded tornadoes. Consider examples of each. Then focus on high water as the deadliest factor, responsible for 80% of all hurricane fatalities.
Making Waves
Investigate waves, which transport energy but not matter. When two waves coexist at the same point, they interfere, resulting in useful and surprising applications. Also examine the Doppler effect, and see what happens when an object moves through a medium faster than the wave speed in that medium.
Electromagnetic Waves
Explore the remarkable insight of physicist James Clerk Maxwell in the 1860s that changing electric fields give rise to magnetic fields in the same way that changing magnetic fields produce electric fields. Together, these changing fields result in electromagnetic waves, one component of which is visible light.
Heat and Temperature
Beginning a new section, learn that heat is a flow of energy driven by a temperature difference. Temperature can be measured with various techniques but is most usefully quantified on the Kelvin scale. Investigate heat capacity and specific heat, and solve problems in heating a house and cooling a nuclear…
Heat Transfer
Analyze heat flow, which involves three important heat-transfer mechanisms: conduction, which results from direct molecular contact; convection, involving the bulk motion of a fluid; and radiation, which transfers energy by electromagnetic waves. Study examples of heat flow in buildings and in the sun's interior.
Matter and Heat
Heat flow into a substance usually raises its temperature. But it can have other effects, including thermal expansion and changes between solid, liquid, and gaseous forms: collectively called phase changes. Investigate these phenomena, starting with an experiment in which Professor Wolfson pours liquid nitrogen onto a balloon filled with air.
Heat and Work
The first law of thermodynamics relates the internal energy of a system to the exchange of heat and mechanical work. Focus on isothermal (constant temperature) and adiabatic (no heat flow) processes, and see how they apply to diesel engines and the atmosphere.
Wave Optics
Returning to themes from episode 18 on waves, discover that when light interacts with objects comparable in size to its wavelength, then its wave nature becomes obvious. Examine interference and diffraction, and see how these effects open the door to certain investigations, while hindering others.
Wave or Particle?
In the 1920s physicists established that light and matter display both wave- and particle-like behavior. Probe the nature of this apparent contradiction and the meaning of Werner Heisenberg's famous uncertainty principle, which introduces a fundamental indeterminacy into physics.