# Electric Energy Episode 31 of Physics and Our Universe: How It All Works Series

## Related videos

Electric Potential
Jolt your understanding of electric potential difference, or voltage. A volt is one joule of work or energy per coulomb of charge. Survey the characteristics of voltage: from batteries, to Van de Graaff generators, to thunderstorms, which discharge lightning across a potential difference of millions of volts.
Electric Current
Learn the definition of the unit of electric current, called the ampere, and how Ohm's law relates the current in common conductors to the voltage across the conductor and the conductor's resistance. Apply Ohm's law to a hard-starting car, and survey tips for handling electricity safely.
Electric Circuits
All electric circuits need an energy source, such as a battery. Learn what happens inside a battery, and analyze simple circuits in series and in parallel, involving one or more resistors. When capacitors are incorporated into circuits, they store electric energy and introduce time dependence into the circuit's behavior.
The Electric Field
On of the most important ideas in physics is the field, which maps the presence and magnitude of a force at different points in space. Explore the concept of the electric field, and learn how Gauss's law describes the field lines emerging from an enclosed charge.
Magnetic Energy
Study the phenomenon of self-inductance in a solenoid coil, finding that the magnetic field within the coil is a repository of magnetic energy, analogous to the electric energy stored in a capacitor. Close by comparing the complementary aspects of electricity and magnetism.
Dark Matter and Dark Energy
Episode 11 of Redefining Reality
What happens when the accepted picture of reality is dramatically overthrown? Watch this happen in the late 20th century, when scientists suddenly discovered two completely unexpected phenomena: dark matter and dark energy, which together dwarf the contribution of ordinary matter to the cosmos.
Work and Energy
See how the precise definition of work leads to the concept of energy. Then explore how some forces give back the work done against them. These conservative forces lead to the concept of stored potential energy, which can be converted to kinetic energy. From here, develop the important idea of…
Using Energy Conservation
A dramatic demonstration with a bowling ball pendulum shows how conservation of energy is a principle you can depend on. Next, solve problems in complicated motion using conservation of energy as a shortcut. Close by drawing the distinction between energy and power, which are often confused.
Space-Time and Mass-Energy
In relativity theory, contrary to popular views, reality is what's not relative: that is, what doesn't depend on one's frame of reference. See how space and time constitute one such pair, merging into a four-dimensional space-time. Mass and energy similarly join, related by Einstein's famous E = mc2.
Energy from the Nucleus
Investigate nuclear fission, in which a heavy, unstable nucleus breaks apart; and nuclear fusion, where light nuclei are joined. In both, the released energy is millions of times greater than the energy from chemical reactions and comes from the conversion of nuclear binding energy to kinetic energy.
Mass and Energy
In this lecture, "classical" physics, as explained by Newtonian and Einsteinian mechanics, provides insight into what makes the Higgs so special. Uncover the key to the Higgs's uniqueness in the particle zoo--that even at its minimum energy state (its "resting" state), the Higgs field has a large, constant value.
Surface Energy: The Interfaces among Us
Episode 12 of The Nature of Matter
A surface is a discontinuity, or interface, between one phase of matter and another. Focus on this crucial boundary, which affects everything from a spacecraft reentering the atmosphere to the efficient washing of clothes. Explore surface phenomena such as films, surface tension, and catalysts.