Gravitomagnetism and Gravitational Waves

Show More

Related videos

Light in Curved Spacetime
See how Einstein's general theory of relativity predicts the bending of light in a gravitational field, famously confirmed in 1919 by the British scientist Arthur Eddington. Learn how this phenomenon creates natural gravitational lenses--and how the bending of light reveals invisible matter in deep space.
Spacetime Tells Matter How to Move
See how gravity affects Minkowski's spacetime geometry, discovering that motion in a gravitational field follows the straightest path in curved spacetime. The curvature in spacetime is not caused by gravity; it is gravity. This startling idea is the essence of Einstein's general theory of relativity.
Abell 2218: A Massive Gravitational Lens
Episode 10 of Experiencing Hubble
One of the consequences of Einstein's general theory of relativity is evident in Hubble's picture of the galaxy cluster Abell 2218. Investigate the physics of this phenomenon, called gravitational lensing, and discover how Hubble has used it to study extremely distant galaxies as well as dark matter.
What Are Tides? Earth and Beyond
Trace the origin of tides to the simple fact that gravity varies from point to point in space. This leads not just to the rise and fall of the ocean, but to the gradual slowing of Earth's rotation, Saturn's spectacular ring system, volcanoes on Jupiter's moon Io, and many other…
The Search for Exoplanets: What Astronomers Know
As recently as 1990, it seemed plausible that the solar system was a unique phenomenon in our galaxy. Thanks to advances in technology and clever new uses of existing data, now we know that planetary systems and possibly even a new Earth can be found throughout galaxies near and far.…
Finding Planets with Gravitational Lensing
Get a lesson in Einstein's general theory of relativity to understand an effect called gravitational microlensing, which allows astronomers to deduce a planet's existence without recording any light from the planet or its host star. This technique reveals exoplanets that would otherwise go undetected.
Resonance—Surprises in the Intricate Dance
Resonance happens whenever a small periodic force produces a large effect on a periodic motion--for example, when you push a child on a swing. Learn how resonance due to gravitational interactions between three bodies can lead to amazing phenomena with planets, asteroids, and rings of planets.
The Million-Body Problem
Consider the problem of gravitational interactions between millions of bodies, such as the countless stars in a galaxy. Amazingly, mathematics can reveal useful information even in these complicated cases. Discover how the analysis of the motions of galaxies led to the prediction of dark matter.
The Misplaced Giant Planets
Investigate 51 Pegasi b, the first planet detected around a Sun-like star, which shocked astronomers by being roughly the size of Jupiter but in an orbit much closer to its star than Mercury is to the Sun. Probe the strange characteristics of these "hot Jupiters," which have turned up around…
The Transits of Exoplanets
A tiny percentage of exoplanets can be detected transiting--or passing in front of--their host stars. Combined with Doppler shifts, transits provide information about a planet's size, mass, density, and likely composition. Learn how ambitious amateur astronomers can use this detection technique in their own backyards.
The Falling Laboratory
Einstein focused on gravity in his general theory of relativity. Hear about his "happiest thought"--the realization that a man in free fall perceives gravity as zero. This simple insight resolved a mystery going all the way back to Newton and led Einstein to the startling discovery that gravity affects light…
Spacetime in Zero Gravity
In an influential interpretation of relativity, Einstein's former mathematics professor Hermann Minkowski reformulated the theory in terms of four-dimensional geometry, which he called spacetime. Learn how to plot events in this coordinate system in cases where gravity is zero.