# Heaven and Earth, Place and Motion Episode 2 of Einstein's Relativity and the Quantum Revolution

## Related videos

Earth and the Ether - A Crisis in Physics
In the 1880s, Albert Michelson and Edward Morley conducted an experiment to determine the motion of Earth relative to the ether. You'll learn about their experiment, its shocking result, and the resulting theoretical crisis.
Describing Motion
Motion is everywhere, at all scales. Learn the difference between distance and displacement, and between speed and velocity. Add to these the concept of acceleration, which is the rate of change of velocity, and you are ready to delve deeper into the fundamentals of motion.
Causes of Motion
For most people, the hardest part of learning physics is to stop thinking like Aristotle, who believed that force causes motion. It doesn't. Force causes change in motion. Learn how Galileo's realization of this principle, and Newton's later formulation of his three laws of motion, launched classical physics.
Rotational Motion
Turn your attention to rotational motion. Rotational analogs of acceleration, force, and mass obey a law related to Newton's second law. This leads to the concept of angular momentum and the all-important -conservation of angular momentum, which explains some surprising and seemingly counterintuitive phenomena involving rotating objects.
Back and Forth: Oscillatory Motion
Start a new section in which you apply Newtonian mechanics to more complex motions. In this episode, study oscillations, a universal phenomenon in systems displaced from equilibrium. A special case is simple harmonic motion, exhibited by springs, pendulums, and even molecules.
Using Newton's Laws: 1-D motion
Investigate Newton's second law, which relates force, mass, and acceleration. Focus on gravity, which results in a force, called weight, that's proportional to an object's mass. Then take a ride in an elevator to see how your measured weight changes due to acceleration during ascent and descent.
Earth, Ether, Light
Review the famous Michelson-Morley experiment, which was designed to detect the motion of Earth relative to a conjectured ether wind that supposedly pervaded all of space. The failure to detect any such motion revealed a deep-seated contradiction at the heart of physics.
Einstein's Relativity and the Quantum Revolution - Modern Physics for Non-Scientists, 2nd Edition
"It doesn't take an Einstein to understand modern physics," says Professor Wolfson at the outset of these twenty-four lectures on what may be the most important subjects in the universe: relativity and quantum physics. Both have reputations for complexity. But the basic ideas behind them are, in fact, simple and…
Time Travel, Tunneling, Tennis, and Tea
What are the two big ideas of modern physics? How can nonscientists gain a handle on these ideas and the radical changes they bring to our philosophical thinking about the physical world?
The Clockwork Universe
Isaac Newton was born in 1642, the year that Galileo died. You'll learn how he built on the work of Galileo and Kepler, developing the three laws of motion and the concept of universal gravitation. You'll learn why Newton's laws suggest a universe that runs like a clock.
Let There Be Light!
The study of motion is not all there is to physics. By the 18th century, scientists were delving into the relationship between the two phenomena. Today, electromagnetism is known to be responsible for the chemical interactions of atoms and molecules and all of modern electronic technology.
Speed is Relative to What?
In mechanics (the branch of physics that studies motion), the principle of Galilean relativity holds - meaning that the laws of mechanics are the same for anything in uniform motion. Is the same true for the laws of electromagnetism?