The Joy of Higher Algebra

Show More

Related videos

Quadratic Equations - Completing the Square
Part of the Series: Algebra I
After learning the definition of a function, investigate an additional approach to solving quadratic equations: completing the square. This technique is very useful when rewriting the equation of a quadratic function in such a way that the graph of the function is easily sketched.
Quadratic Equations - The Quadratic Formula
Part of the Series: Algebra I
For those cases that defy simple factoring, the quadratic formula provides a powerful technique for solving quadratic equations. Discover that this formidable-looking expression is not as difficult as it appears and is well worth committing to memory. Also learn how to determine if a quadratic equation has no solutions.
Factoring Trinomials
Part of the Series: Algebra I
Begin to find solutions for quadratic equations, starting with the FOIL technique in reverse to find the binomial factors of a quadratic trinomial (a binomial expression consists of two terms, a trinomial of three). Professor Sellers explains the tricks of factoring such expressions, which is a process almost like solving…
Linear Equations for Real-World Data
Part of the Series: Algebra I
Investigating more real-world applications of linear equations, derive the formula for converting degrees Celsius to Fahrenheit; determine the boiling point of water in Denver, Colorado; and calculate the speed of a rising balloon and the time for an elevator to descend to the ground floor.
Solving Radical Equations
Part of the Series: Algebra I
Discover how to solve equations that contain radical expressions. A key step is isolating the radical term and then squaring both sides. As always, it's important to check the solution by plugging it into the equation to see if it makes sense. This is especially true with radical equations, which…
The Pythagorean Theorem
Part of the Series: Algebra I
Because it involves terms raised to the second power, the famous Pythagorean theorem, a2 + b2 = c2, is actually a quadratic equation. Discover how techniques you have previously learned for analyzing quadratic functions can be used for solving problems involving right triangles.
Solving Word Problems with Linear Equations
Part of the Series: Algebra I
Linear equations reflect the behavior of real-life phenomena. Practice evaluating tables of numbers to determine if they can be represented as linear equations. Conclude with an example about the yearly growth of a tree. Does it increase in size at a linear rate?
Systems of Linear Equations, Part 2
Part of the Series: Algebra I
Expand your tools for solving systems of linear equations by exploring the method of solving by elimination. This technique allows you to eliminate one variable by performing addition, subtraction, or multiplication on both sides of an equation, allowing a straightforward solution for the remaining variable.
Solving Linear Equations, Part 1
Part of the Series: Algebra I
In this lesson, work through simple one- and two-step linear equations, learning how to isolate the variable by different operations. Professor Sellers also presents a word problem involving a two-step equation and gives tips for how to solve it.
Variables and Algebraic Expressions
Part of the Series: Algebra I
Advance to the next level of problem solving by using variables as the building blocks to create algebraic expressions, which are combinations of mathematical symbols that might include numbers, variables, and operation symbols. Also learn some tricks for translating the language of problems (phrases in English) into the language of…
Rational Expressions, Part 2
Part of the Series: Algebra I
Continuing your exploration of rational expressions, try your hand at multiplying and dividing them. The key to solving these complicated-looking equations is to proceed one step at a time. Close the lesson with a problem that brings together all you've learned about rational functions.
Quadratic Equations - Factoring
Part of the Series: Algebra I
In some circumstances, quadratic expressions are given in a special form that allows them to be factored quickly. Focus on two such forms: perfect square trinomials and differences of two squares. Learning to recognize these cases makes factoring easy.