Low Pressure and Earth’s High Winds

Low Pressure and Earth’s High Winds
Show More

Related videos

Tornadoes and Their Amazing Winds
Tornadoes hit all 50 states of the U.S. and most inhabited regions of the world. Blowing as fast as 200 to 300 mph, they are the most awe-inspiring of extreme weather. But what exactly are they? And why are they more prevalent in some areas than others? Probe tornado facts…
Wind Shear and Severe Thunderstorms
Wind shear is the ingredient that turns an ordinary thunderstorm into a monster. Study the mechanisms that underlie this transformation. Then evaluate the crucial difference between a severe weather watch versus a warning, and put yourself in the shoes of a forecaster calling the shots.
Time’s Arrow
Embark on the quest that will occupy the rest of the course: Why is there an arrow of time? Explore how memory and aging orient us in time. Then look at irreversible processes, such as an egg breaking or ice melting. These capture the essence of the one-way direction of…
Earth, Ether, Light
Review the famous Michelson-Morley experiment, which was designed to detect the motion of Earth relative to a conjectured ether wind that supposedly pervaded all of space. The failure to detect any such motion revealed a deep-seated contradiction at the heart of physics.
It's a 3-D World!
Add the concept of vector to your physics toolbox. Vectors allow you to specify the magnitude and direction of a quantity such as velocity. The vector's direction can be along any axis, allowing analysis of motion in three dimensions. Then use vectors to solve several problems in projectile motion.
Using Newton's Laws: 1-D motion
Investigate Newton's second law, which relates force, mass, and acceleration. Focus on gravity, which results in a force, called weight, that's proportional to an object's mass. Then take a ride in an elevator to see how your measured weight changes due to acceleration during ascent and descent.
Newton's Laws in 2 and 3 Dimensions
Consider Newton's laws in cases of two and three dimensions. For example, how fast does a rollercoaster have to travel at the top of a loop to keep passengers from falling out? Is there a force pushing passengers up as the coaster reaches the top of its arc? The answer…
The Science of Extreme Weather
Thanks to an ongoing revolution in the science of meteorology, we can now understand how extreme weather conditions arise, produce far more accurate forecasts, and know how to protect ourselves when dangerous conditions develop. The Science of Extreme Weather is your field guide to the worst that Earth's atmosphere can…
Extreme Weather Is Everywhere
Survey the remarkable range of extreme weather around the planet. Then consider: Why does Earth have weather at all? Professor Snodgrass introduces basic features of the atmosphere that naturally lead to severe weather. He concludes by outlining the goals of the course--among them, preparedness.
Temperature Extremes and Cold-Air Outbreaks
Discover the origin of Earth's great variability in air temperature, and learn how it also explains the seasons. Search for the highest and lowest temperatures on the planet, and the locations with the greatest difference between highs and lows. Along the way, encounter the deadliest weather on Earth.
Extreme Humidity, Rain, and Fog
Severe weather is driven by water's ability to change phase--with energy being released during the transition from vapor to liquid, and from liquid to ice. Calculate the stupendous amount of energy brewing in a typical thunderstorm, and study cases of extreme humidity, rain, and fog.
How Radar Reveals Storms
In this and the next lecture, study the advanced technology that has revolutionized extreme weather forecasting. Here, look at how radar has vastly improved the prediction of tornadic thunderstorms. You've seen Doppler radar images in forecasts. Now learn how this all-important tracking tool works.