The Particle Zoo

The Particle Zoo
Show More

Related videos

The Particle Zoo
By 1960 a myriad of seeming elementary particles had been discovered. Survey the standard model that restored order to this subatomic chaos, describing a universe whose fundamental particles include six quarks; the electron and two heavier cousins; elusive neutrinos; and force-carrying particles such as the photon.
Wave or Particle?
Einstein's resolution of the photoelectric effect problem suggests that light consists of particles (photons). But how can this be reconciled with the understanding of light as an electromagnetic wave?
Particle or Wave?
In 1923, Louis de Broglie proposed that, like light photons, particles of matter might also display wave properties. The wave nature of smaller particles such as electrons is quite visible and leads to many unusual phenomena, including quantum tunneling mentioned in Lecture 1.
Particle Accelerators and Detectors
Want to build your own particle accelerator? You'll need a lot of money, a lot of room, and the information that Professor Carroll shares in this lecture. You'll learn that particle accelerators aren't simply "atom smashers." They bring into existence new particles that weren't there before.
Beyond the Standard Model of Particle Physics
Now that the Higgs boson has been found, everything is answered, right? Not quite. Professor Carroll says the properties of the Higgs suggest that something else is at work out there. Moreover, the Higgs boson can be a stepping-stone to our exploration of dark matter, extra dimensions, the asymmetry of…
Time Reversal in Particle Physics
Explore advances in physics since Newton's time that reveal exceptions to the rule that interactions between moving particles are fully reversible. Could irreversible reactions between elementary particles explain the arrow of time? Weigh the evidence for and against this view.
Wave or Particle?
In the 1920s physicists established that light and matter display both wave- and particle-like behavior. Probe the nature of this apparent contradiction and the meaning of Werner Heisenberg's famous uncertainty principle, which introduces a fundamental indeterminacy into physics.
Atoms to Particles
Now that you know what particles really are, it's time to walk through the "particle zoo" and explore the roles of photons, gluons, and quarks. Along the way, Professor Carroll looks back on the development of the Standard Model and how our changing understanding of the weak nuclear field suggested…
Colliding Particles
Once physicists established the need for the Higgs boson to exist, how did they set out to locate it? It was just a matter of bringing the particles and fields together under the right conditions. You'll see how physicists use Feynman diagrams to keep track of how virtual particles carry…
Systems of Particles
How do you analyze a complex system in motion? One special point in the system, called the center of mass, reduces the problem to its simplest form. Also learn how a system's momentum is unchanged unless external forces act on it. Then apply the conservation of momentum principle to analyze…
Einstein's Relativity and the Quantum Revolution - Modern Physics for Non-Scientists, 2nd Edition
"It doesn't take an Einstein to understand modern physics," says Professor Wolfson at the outset of these twenty-four lectures on what may be the most important subjects in the universe: relativity and quantum physics. Both have reputations for complexity. But the basic ideas behind them are, in fact, simple and…
Time Travel, Tunneling, Tennis, and Tea
What are the two big ideas of modern physics? How can nonscientists gain a handle on these ideas and the radical changes they bring to our philosophical thinking about the physical world?