Principles of Graphing in 2 Dimensions
Episode 6 of Algebra I

Principles of Graphing in 2 Dimensions
Show More

Related videos

Graphing Linear Equations, Part 1
Episode 10 of Algebra I
Use what you've learned about slope to graph linear equations in the slope-intercept form, y = mx + b, where m is the slope, and b is the y intercept. Experiment with examples in which you calculate the equation from a graph and from a table of pairs of points.
Graphing Linear Equations, Part 2
Episode 11 of Algebra I
A more versatile approach to writing the equation of a line is the point-slope form, in which only two points are required, and neither needs to intercept the y axis. Work through several examples and become comfortable determining the equation using the line and the line using the equation.
Graphing Rational Functions, Part 1
Episode 30 of Algebra I
Examine the distinctive graphs formed by rational functions, which may form vertical or horizontal curves that aren't even connected on a graph. Learn to identify the intercepts and the vertical and horizontal asymptotes of these fascinating curves.
Graphing Rational Functions, Part 2
Episode 31 of Algebra I
Sketch the graphs of several rational functions by first calculating the vertical and horizontal asymptotes, the x and y intercepts, and then plotting several points in the function. In the final exercise, you must simplify the expression in order to extract the needed information.
Graphing Radical Functions
Episode 34 of Algebra I
In previous lessons, you moved from linear, quadratic, and rational functions to the graphs that display them. Now do the same with radical functions. For these, it's important to pay attention to the domain of the functions to ensure that negative values are not introduced beneath the root symbol.
An Introduction to the Course
Episode 1 of Algebra I
Professor Sellers introduces the general topics and themes for the course, describing his approach and recommending a strategy for making the best use of the lessons and supplementary workbook. Warm up with some simple problems that demonstrate signed numbers and operations.
Order of Operations
Episode 2 of Algebra I
The order in which you do simple operations of arithmetic can make a big difference. Learn how to solve problems that combine adding, subtracting, multiplying, and dividing, as well as raising numbers to various powers. These same concepts also apply when you need to simplify algebraic expressions, making it critical…
Percents, Decimals, and Fractions
Episode 3 of Algebra I
Continue your study of math fundamentals by exploring various procedures for converting between percents, decimals, and fractions. Professor Sellers notes that it helps to see these procedures as ways of presenting the same information in different forms.
Variables and Algebraic Expressions
Episode 4 of Algebra I
Advance to the next level of problem solving by using variables as the building blocks to create algebraic expressions, which are combinations of mathematical symbols that might include numbers, variables, and operation symbols. Also learn some tricks for translating the language of problems (phrases in English) into the language of…
Operations and Expressions
Episode 5 of Algebra I
Discover that by following basic rules on how to treat coefficients and exponents, you can reduce very complicated algebraic expressions to much simpler ones. You start by using the commutative property of multiplication to rearrange the terms of an expression, making combining them relatively easy.
Solving Linear Equations, Part 1
Episode 7 of Algebra I
In this lesson, work through simple one- and two-step linear equations, learning how to isolate the variable by different operations. Professor Sellers also presents a word problem involving a two-step equation and gives tips for how to solve it.
Solving Linear Equations, Part 2
Episode 8 of Algebra I
Investigating more complicated examples of linear equations, learn that linear equations fall into three categories. First, the equation might have exactly one solution. Second, it might have no solutions at all. Third, it might be an identity, which means every number is a solution.