Radical Expressions
Part of the Series: Algebra I

Show More

Related videos

Variables and Algebraic Expressions
Part of the Series: Algebra I
Advance to the next level of problem solving by using variables as the building blocks to create algebraic expressions, which are combinations of mathematical symbols that might include numbers, variables, and operation symbols. Also learn some tricks for translating the language of problems (phrases in English) into the language of…
Operations and Expressions
Part of the Series: Algebra I
Discover that by following basic rules on how to treat coefficients and exponents, you can reduce very complicated algebraic expressions to much simpler ones. You start by using the commutative property of multiplication to rearrange the terms of an expression, making combining them relatively easy.
Rational Expressions, Part 1
Part of the Series: Algebra I
When one polynomial is divided by another, the result is called a rational function because it is the ratio of two polynomials. These functions play an important role in algebra. Learn how to add and subtract rational functions by first finding their common divisor.
Rational Expressions, Part 2
Part of the Series: Algebra I
Continuing your exploration of rational expressions, try your hand at multiplying and dividing them. The key to solving these complicated-looking equations is to proceed one step at a time. Close the lesson with a problem that brings together all you've learned about rational functions.
Solving Radical Equations
Part of the Series: Algebra I
Discover how to solve equations that contain radical expressions. A key step is isolating the radical term and then squaring both sides. As always, it's important to check the solution by plugging it into the equation to see if it makes sense. This is especially true with radical equations, which…
Graphing Radical Functions
Part of the Series: Algebra I
In previous lessons, you moved from linear, quadratic, and rational functions to the graphs that display them. Now do the same with radical functions. For these, it's important to pay attention to the domain of the functions to ensure that negative values are not introduced beneath the root symbol.
An Introduction to the Course
Part of the Series: Algebra I
Professor Sellers introduces the general topics and themes for the course, describing his approach and recommending a strategy for making the best use of the lessons and supplementary workbook. Warm up with some simple problems that demonstrate signed numbers and operations.
Order of Operations
Part of the Series: Algebra I
The order in which you do simple operations of arithmetic can make a big difference. Learn how to solve problems that combine adding, subtracting, multiplying, and dividing, as well as raising numbers to various powers. These same concepts also apply when you need to simplify algebraic expressions, making it critical…
Percents, Decimals, and Fractions
Part of the Series: Algebra I
Continue your study of math fundamentals by exploring various procedures for converting between percents, decimals, and fractions. Professor Sellers notes that it helps to see these procedures as ways of presenting the same information in different forms.
Principles of Graphing in 2 Dimensions
Part of the Series: Algebra I
Using graph paper and pencil, begin your exploration of the coordinate plane, also known as the Cartesian plane. Learn how to plot points in the four quadrants of the plane, how to choose a scale for labeling the x and y axes, and how to graph a linear equation.
Solving Linear Equations, Part 1
Part of the Series: Algebra I
In this lesson, work through simple one- and two-step linear equations, learning how to isolate the variable by different operations. Professor Sellers also presents a word problem involving a two-step equation and gives tips for how to solve it.
Solving Linear Equations, Part 2
Part of the Series: Algebra I
Investigating more complicated examples of linear equations, learn that linear equations fall into three categories. First, the equation might have exactly one solution. Second, it might have no solutions at all. Third, it might be an identity, which means every number is a solution.