Reversibility and the Laws of Physics

The Great Courses
Show More

Related videos

Time Reversal in Particle Physics
Explore advances in physics since Newton's time that reveal exceptions to the rule that interactions between moving particles are fully reversible. Could irreversible reactions between elementary particles explain the arrow of time? Weigh the evidence for and against this view.
The Clockwork Universe
Isaac Newton was born in 1642, the year that Galileo died. You'll learn how he built on the work of Galileo and Kepler, developing the three laws of motion and the concept of universal gravitation. You'll learn why Newton's laws suggest a universe that runs like a clock.
The Particle Zoo
Are quarks, the particles that make up protons and neutrons, the truly elementary particles? What are the three fundamental forces that physicists identify as holding particles together? Are they manifestations of a single, universal force?
Wave or Particle?
Einstein's resolution of the photoelectric effect problem suggests that light consists of particles (photons). But how can this be reconciled with the understanding of light as an electromagnetic wave?
Particle or Wave?
In 1923, Louis de Broglie proposed that, like light photons, particles of matter might also display wave properties. The wave nature of smaller particles such as electrons is quite visible and leads to many unusual phenomena, including quantum tunneling mentioned in Lecture 1.
Speed is Relative to What?
In mechanics (the branch of physics that studies motion), the principle of Galilean relativity holds - meaning that the laws of mechanics are the same for anything in uniform motion. Is the same true for the laws of electromagnetism?
Complexity and Life
Discover that Maxwell's demon from episode 10 provides the key to understanding how complexity and life can exist in a universe in which entropy is increasing. Consider how life is not only compatible with, but is an outgrowth of, the second law of thermodynamics and the arrow of time.
Uncommon Sense - Stretching Time
Why does the simple statement of relativity - that the laws of physics are the same for all observers in uniform motion - lead directly to absurd-seeming situations that violate our commonsense notions of space and time?
Toward a Theory of Everything
Why can't we answer questions about what happened before the Big Bang, or what goes on at the center of a black hole? Can we manage the formidable task of combining quantum physics with general relativity? Physics may well be the most important subject in the universe, a theoretical realm…
The Power of Symmetry
Symmetries don't only apply to geometrical objects. They apply to the laws of physics themselves. In this lecture, you may feel your mind twist in asymmetrical ways as you explore how symmetry governs the known forces of nature and how it helped form a wild theory that an as-yet-undiscovered particle--the…
Causes of Motion
For most people, the hardest part of learning physics is to stop thinking like Aristotle, who believed that force causes motion. It doesn't. Force causes change in motion. Learn how Galileo's realization of this principle, and Newton's later formulation of his three laws of motion, launched classical physics.
Newton's Laws in 2 and 3 Dimensions
Consider Newton's laws in cases of two and three dimensions. For example, how fast does a rollercoaster have to travel at the top of a loop to keep passengers from falling out? Is there a force pushing passengers up as the coaster reaches the top of its arc? The answer…