Space-Time and Mass-Energy Episode 48 of Physics and Our Universe: How It All Works Series

Related videos

Mass and Energy
In this lecture, "classical" physics, as explained by Newtonian and Einsteinian mechanics, provides insight into what makes the Higgs so special. Uncover the key to the Higgs's uniqueness in the particle zoo--that even at its minimum energy state (its "resting" state), the Higgs field has a large, constant value.
Time and Space
Einstein's special theory of relativity upends traditional notions of space and time. Solve the simple formulas that show the reality of time dilation and length contraction. Conclude by examining the twins paradox, discovering why one twin who travels to a star and then returns ages more slowly than the twin…
Frontiersâ€”Higgs in Space
The Standard Model explains the forces and molecules that comprise us and everything with which we interact. But even with the Higgs, we can't explain the stuff that makes up 95% of the universe: dark matter and dark energy. In his conclusion, Professor Carroll shines a light on dark matter,…
Dark Matter and Dark Energy
Episode 11 of Redefining Reality
What happens when the accepted picture of reality is dramatically overthrown? Watch this happen in the late 20th century, when scientists suddenly discovered two completely unexpected phenomena: dark matter and dark energy, which together dwarf the contribution of ordinary matter to the cosmos.
Magnetic Energy
Study the phenomenon of self-inductance in a solenoid coil, finding that the magnetic field within the coil is a repository of magnetic energy, analogous to the electric energy stored in a capacitor. Close by comparing the complementary aspects of electricity and magnetism.
Work and Energy
See how the precise definition of work leads to the concept of energy. Then explore how some forces give back the work done against them. These conservative forces lead to the concept of stored potential energy, which can be converted to kinetic energy. From here, develop the important idea of…
Using Energy Conservation
A dramatic demonstration with a bowling ball pendulum shows how conservation of energy is a principle you can depend on. Next, solve problems in complicated motion using conservation of energy as a shortcut. Close by drawing the distinction between energy and power, which are often confused.
Electric Energy
Study stored electric potential energy in fuels such as gasoline, where the molecular bonds represent an enormous amount of energy ready to be released. Also look at a ubiquitous electronic component called the capacitor, which stores an electric charge, and discover that all electric fields represent stored energy.
Energy from the Nucleus
Investigate nuclear fission, in which a heavy, unstable nucleus breaks apart; and nuclear fusion, where light nuclei are joined. In both, the released energy is millions of times greater than the energy from chemical reactions and comes from the conversion of nuclear binding energy to kinetic energy.
What Is Time?
Approach time from a philosophical perspective. "Presentism" holds that the past and future are not real; only the present moment is real. However, the laws of physics appear to support "eternalism"--the view that all of the moments in the history of the universe are equally real.
Keeping Time
How do we measure the passage of time? Discover that practical concerns have driven the search for more and more accurate clocks. In the 18th century, the problem of determining longitude was solved with a timepiece of unprecedented accuracy. Today's GPS navigation units rely on clocks accurate to a billionth…
Time in Quantum Mechanics
Quantum mechanics is the most precise theory ever invented, yet it leads to startling interpretations of the nature of reality. Probe a quantum state called the collapse of the wave function that may underlie the arrow of time. Are the indications that it shows irreversibility real or only illusory?