Spacetime in Zero Gravity

Spacetime in Zero Gravity
Show More

Related videos

Black Holes, Tides, and Curved Spacetime - Understanding Gravity Course
Gravity rules the universe. Without it, everything would dissolve into a gas of randomly interacting atoms. Yet gravity is one of the least understood forces in nature. Black Holes, Tides, and Curved Spacetime introduces you to key ideas in gravity research over the past 400 years. It's an awe-inspiring journey…
Matter Tells Spacetime How to Curve
The curvature of spacetime depends upon matter--and tidal effects. In this episode, see how ordinary tidal effects reveal a simplified form of Einstein's greatest discovery: the equation governing the curvature of spacetime by matter.
Light in Curved Spacetime
See how Einstein's general theory of relativity predicts the bending of light in a gravitational field, famously confirmed in 1919 by the British scientist Arthur Eddington. Learn how this phenomenon creates natural gravitational lenses--and how the bending of light reveals invisible matter in deep space.
Spacetime Tells Matter How to Move
See how gravity affects Minkowski's spacetime geometry, discovering that motion in a gravitational field follows the straightest path in curved spacetime. The curvature in spacetime is not caused by gravity; it is gravity. This startling idea is the essence of Einstein's general theory of relativity.
Gravity’s Horizon—Anatomy of a Black Hole
Plunge into the subject of black holes, which are massive objects that have collapsed completely under their own gravity. Learn how black holes distort spacetime and explore the supermassive black holes that lie at the hearts of galaxies. Then ask: Are there such things as micro-black holes?
The Search for Exoplanets: What Astronomers Know
As recently as 1990, it seemed plausible that the solar system was a unique phenomenon in our galaxy. Thanks to advances in technology and clever new uses of existing data, now we know that planetary systems and possibly even a new Earth can be found throughout galaxies near and far.…
Why Study Exoplanets?
Learn about the exciting mission of exoplanetary science--the study of planets orbiting stars beyond the Sun. Review the eight planets in our solar system, which provide a baseline for understanding the more than 1,000 worlds recently discovered in our region of the Milky Way galaxy.
How to Find an Exoplanet
Given the extreme faintness of a planet relative to the star it orbits, how can astronomers possibly find it? Learn about direct and indirect methods of detection. As an example of the indirect method, discover why a planet causes a star's position to change, providing a strategy for locating exoplanets…
Doppler and Transit Planet-Finding Methods
Explore two other indirect approaches for finding exoplanets: first, by measuring the Doppler shift in the color of a star due to the pull of an unseen orbiting planet; and second, by measuring the tiny drop in the brightness of a star as a planet transits in front of it.
Pioneers of Planet Searching
Chart the history of exoplanet hunting--from a famous false signal in the 1960s, through ambiguous discoveries in the 1980s, to the big breakthrough in the 1990s, when dozens of exoplanets turned up. Astronomers were stunned to find planets unlike anything in the solar system.
The Misplaced Giant Planets
Investigate 51 Pegasi b, the first planet detected around a Sun-like star, which shocked astronomers by being roughly the size of Jupiter but in an orbit much closer to its star than Mercury is to the Sun. Probe the strange characteristics of these "hot Jupiters," which have turned up around…
Explaining the Misplaced Giant Planets
The standard theory of planet formation is based on our solar system. But does this view require revision based on the existence of misplaced giant planets--hot Jupiters circling close to their parent stars? Compare competing theories that try to resolve this conflict.