Systems of Particles

Systems of Particles
Show More

Related videos

Atoms to Particles
Now that you know what particles really are, it's time to walk through the "particle zoo" and explore the roles of photons, gluons, and quarks. Along the way, Professor Carroll looks back on the development of the Standard Model and how our changing understanding of the weak nuclear field suggested…
Colliding Particles
Once physicists established the need for the Higgs boson to exist, how did they set out to locate it? It was just a matter of bringing the particles and fields together under the right conditions. You'll see how physicists use Feynman diagrams to keep track of how virtual particles carry…
Time Reversal in Particle Physics
Explore advances in physics since Newton's time that reveal exceptions to the rule that interactions between moving particles are fully reversible. Could irreversible reactions between elementary particles explain the arrow of time? Weigh the evidence for and against this view.
Wave or Particle?
In the 1920s physicists established that light and matter display both wave- and particle-like behavior. Probe the nature of this apparent contradiction and the meaning of Werner Heisenberg's famous uncertainty principle, which introduces a fundamental indeterminacy into physics.
The Particle Zoo
By 1960 a myriad of seeming elementary particles had been discovered. Survey the standard model that restored order to this subatomic chaos, describing a universe whose fundamental particles include six quarks; the electron and two heavier cousins; elusive neutrinos; and force-carrying particles such as the photon.
Particle Accelerators and Detectors
Want to build your own particle accelerator? You'll need a lot of money, a lot of room, and the information that Professor Carroll shares in this lecture. You'll learn that particle accelerators aren't simply "atom smashers." They bring into existence new particles that weren't there before.
Beyond the Standard Model of Particle Physics
Now that the Higgs boson has been found, everything is answered, right? Not quite. Professor Carroll says the properties of the Higgs suggest that something else is at work out there. Moreover, the Higgs boson can be a stepping-stone to our exploration of dark matter, extra dimensions, the asymmetry of…
Mysteries of Modern Physics: Time Series
Time seems to be woven into the very fabric of the universe. But why? In 24 riveting half-hour episodes, Mysteries of Modern Physics: Time shows how a feature of the world that we all experience connects us to the instant of the formation of the universe--and possibly to a multiverse…
Why Time Is a Mystery
Begin your study of the physics of time with these questions: What is a clock? What does it mean to say that "time passes"? What is the "arrow of time"? Then look at the concept of entropy and how it holds the key to the one-way direction of time in…
What Is Time?
Approach time from a philosophical perspective. "Presentism" holds that the past and future are not real; only the present moment is real. However, the laws of physics appear to support "eternalism"--the view that all of the moments in the history of the universe are equally real.
Keeping Time
How do we measure the passage of time? Discover that practical concerns have driven the search for more and more accurate clocks. In the 18th century, the problem of determining longitude was solved with a timepiece of unprecedented accuracy. Today's GPS navigation units rely on clocks accurate to a billionth…
Time’s Arrow
Embark on the quest that will occupy the rest of the course: Why is there an arrow of time? Explore how memory and aging orient us in time. Then look at irreversible processes, such as an egg breaking or ice melting. These capture the essence of the one-way direction of…