The Visuals of Graphs

Show More

Related videos

Linear Equations and Their Graphs
Key concepts explained: linear equations and their graphs, and the domain of an equation.
Symmetry: Revitalizing Quadratics Graphing
Throw away the quadratic formula you learned in algebra class. Instead, use the power of symmetry to graph quadratic functions with surprising ease. Try a succession of increasingly scary-looking quadratic problems. Then see something totally magical not to be found in textbooks.
Bringing Visual Mathematics Together
By repeatedly folding a sheet of paper using a simple pattern, you bring together many of the ideas from previous lectures. Finish the course with a challenge question that reinterprets the folding exercise as a problem in sharing jelly beans. But don't panic! This is a test that practically takes…
The Power of a Mathematical Picture
Professor Tanton reminisces about his childhood home, where the pattern on the ceiling tiles inspired his career in mathematics. He unlocks the mystery of those tiles, demonstrating the power of visual thinking. Then he shows how similar patterns hold the key to astounding feats of mental calculation.
Visualizing Negative Numbers
Negative numbers are often confusing, especially negative parenthetical expressions in algebra problems. Discover a simple visual model that makes it easy to keep track of what's negative and what's not, allowing you to tackle long strings of negatives and positives--with parentheses galore.
Visualizing Ratio Word Problems
Word problems. Does that phrase strike fear into your heart? Relax with Professor Tanton's tips on cutting through the confusing details about groups and objects, particularly when ratios and proportions are involved. Your handy visual devices include blocks, paper strips, and poker chips.
Visualizing Extraordinary Ways to Multiply
Consider the oddity of the long-multiplication algorithm most of us learned in school. Discover a completely new way to multiply that is graphical--and just as strange! Then analyze how these two systems work. Finally, solve the mystery of why negative times negative is always positive.
Visualizing Area Formulas
Never memorize an area formula again after you see these simple visual proofs for computing areas of rectangles, parallelograms, triangles, polygons in general, and circles. Then prove that for two polygons of the same area, you can dissect one into pieces that can be rearranged to form the other.
The Power of Place Value
Probe the computational miracle of place value--where a digit's position in a number determines its value. Use this powerful idea to create a dots-and-boxes machine capable of performing any arithmetical operation in any base system--including decimal, binary, ternary, and even fractional bases.
Pushing Long Division to New Heights
Put your dots-and-boxes machine to work solving long-division problems, making them easy while shedding light on the rationale behind the confusing long-division algorithm taught in school. Then watch how the machine quickly handles scary-looking division problems in polynomial algebra.
Pushing Long Division to Infinity
"If there is something in life you want, then just make it happen!" Following this advice, learn to solve polynomial division problems that have negative terms. Use your new strategy to explore infinite series and Mersenne primes. Then compute infinite sums with the visual approach.
Visualizing Decimals
Expand into the realm of decimals by probing the connection between decimals and fractions, focusing on decimals that repeat. Can they all be expressed as fractions? If so, is there a straightforward way to convert repeating decimals to fractions using the dots-and-boxes method? Of course there is!