Voting Paradoxes

Voting Paradoxes
Show More

Related videos

The Paradox of Paradoxes
Close the course by asking the big questions about puzzles and paradoxes: Why are we so obsessed with them? Why do we relish the mental dismay that comes from contemplating a paradox? Why do we expend so much effort trying to solve conundrums and riddles? Professor Kung shows that there's…
Mind-Bending Math: Riddles and Paradoxes
Discover the timeless riddles and paradoxes that have confounded the greatest philosophical, mathematical, and scientific minds in history. Stretching your mind to try to solve a puzzle, even when the answer eludes you, can help sharpen your mind and focus - and it's an intellectual thrill!
Probability Paradoxes
Investigate a puzzle that defied some of the most brilliant minds in mathematics: the Monty Hall problem, named after the host of Let's Make a Deal! Hall would let contestants change their guess about the location of a hidden prize after revealing new information about where it was not.
Zeno's Paradoxes of Motion
Tour a series of philosophical problems from 2,400 years ago: Zeno's paradoxes of motion, space, and time. Explore solutions using calculus and other techniques. Then look at the deeper philosophical implications, which have gained new relevance through the discoveries of modern physics.
The Joy of Fibonacci Numbers
Episode 5 of The Joy of Mathematics
The Fibonacci numbers follow the simple pattern 1, 1, 2, 3, 5, 8, etc., in which each number is the sum of the two preceding numbers. Fibonacci numbers have many beautiful and unexpected properties, and show up in nature, art, and poetry.
The Joy of Algebra
Episode 6 of The Joy of Mathematics
Arguably the most important area of mathematics, algebra introduces the powerful idea of using an abstract variable to represent an unknown quantity. This lecture demonstrates algebra's golden rule: Do unto one side of an equation as you do unto the other.
The Joy of Higher Algebra
Episode 7 of The Joy of Mathematics
This lecture shows how to solve quadratic (second-degree) equations from the technique of completing the square and the quadratic formula. The quadratic formula reveals the connection between Fibonacci numbers and the golden ratio.
The Joy of Algebra Made Visual
Episode 8 of The Joy of Mathematics
Algebra can be used to solve geometrical problems, such as finding where two lines cross. The technique is useful in real-life problems, for example, in choosing a telephone plan. Graphs help us better understand everything from lines to equations with negative or fractional exponents.
The Joy of 9
Episode 9 of The Joy of Mathematics
Adding the digits of a multiple of 9 always gives a multiple of 9. For example: 9 x 4 = 36, and 3 + 6 = 9. In modular arithmetic, this property allows checking answers by "casting out nines." A related trick: mentally computing the day of the week for…
The Joy of Proofs
Episode 10 of The Joy of Mathematics
Professor Benjamin begins his discussion of mathematical proofs with intuitive cases like "even plus even is even" and "odd times odd is odd." He builds to more complex proofs by existence and induction, and ends with a checkerboard challenge.
The Joy of Geometry
Episode 11 of The Joy of Mathematics
Geometry is based on a handful of definitions and axioms involving points, lines, and angles. These lead to important conclusions about the properties of polygons. This lecture uses geometric reasoning to derive the Pythagorean theorem and other interesting results.
The Joy of Pi
Episode 12 of The Joy of Mathematics
Pi is the ratio of the circumference of a circle to its diameter. It starts 3.14 and continues in an infinite nonrepeating sequence. Professor Benjamin shows how to learn the first hundred digits of this celebrated number, making it look as easy as pie.